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XIIL On the Calculus of Symbols.—Second Memoir. By W. H. L. RusseLL, Esq., 4.B.
Communicated by ArRrEUR CAYLEY, Esq., F.R.S.

Made up of two Memoirs: one received January 7,—Read January 80, 1862; the other
received June 18,—Read June 19, 1862.

Tuis Memoir is a continuation of one on the Calculus of Symbols which I had the
honour to lay before the Society in December 1860, and which has since been published
in the Philosophical Transactions. I commence this paper with some extensions of
the method given in the former memoir for resolving functions of non-commutative
symbols into binomial factors. I then explain a method, analogous to the process for
extracting the square root in ordinary algebra, for resolving such functions into equal
factors. I next investigate a process for finding the highest common internal divisor
of two functions of non-commutative symbols, or, in other words, of finding if two
linear differential equations admit of a common solution. After this, I give a rule for
multiplying linear factors of non-commutative symbols, analogous to the ordinary
algebraical rule for linear algebraical factors. I then resume the consideration of the
binomial theorem explained in the former memoir. Two new forms of this binomial
theorem are here given; and the method by which these forms are proved identical
will, I hope, be considered an interesting portion of symbolical algebra, and as exhibit-
ing in a remarkable manner its peculiar nature.

In the next place, I proceed to calculate the general values of the coefficients which
occur in the form of the binomial theorem given in the first memoir; I then obtain an
expression for the symbolical coefficient of the general term of the multinomial theorem
as previously explained ; and also a theorem for the multiplication of symbolical factors
emanating from each other after a given law; lastly, I investigate a binomial theorem
reciprocal to the binomial theorem already considered.

In the former memoir I explained a process by which the symbolical function

&' 0"(7)+&" 0 s(7) " Pus(T)F - . . F00(7)

could be resolved in all possible cases into factors of the form

(b OO e Om A 5) (e,

I shall now give a method by which the same symbolical function may be resolved into
factors of the form

(SO TP PLE D+ 05) . (7))

By pursuing methods similar to those employed in the preceding paper, we find the
following equations as the condition that g*J,(7)4-+J,(7) may be an internal factor of
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264 MR. W. H. L. RUSSELL ON THE CALCULUS OF SYMBOLS.

the given symbolical function,

‘I’o( ) ‘po"‘po(” 2)

%(W) '4’ %( —2)+'~IJ (m—2 xlr(w——4)¢4( )_"'=0a
o i+ 2)+ T s o(r— )= ... =0,

Again, the cond1t10ns that g*Jy(7)+J,(7) may be an external factor of the same
symbolical function will be given by the equations .

0(m)— 3 um)+ Nt o) —

w+1 7+ Ddy(r+3
o) — P 7 )+$g<,,11$g,,13> ¢(7)—

‘We may also find in like manner the conditions that gYu(#)4Uy(7), e"Vu(7)+Yo(7)
may be internal or external factors of the given symbolical function: in every case the
number of equations of condition will be equal to the degree of (¢) in the given factor.

By applying the method of divisors, as explained in the former paper, we may ascer-
tain the forms of J,(w), Yy(7) in order that ¢*y,(w)4Y,(w) may be an internal factor of
the given symbolical function. In the present case, however, {,(#) must be a divisor
both of ¢,(x) and ¢,_,(w), ¥,(7) a divisor both of ¢,(7) and ¢,(w),—a consideration which
will greatly simplify the process. We proceed, in like manner, should there be no internal
factors of the form g*y,7 Yy, ¢ Vo(m) + (), to ascertain if there are any of the form
¢ Yo(7)+Yy(7), &ec.; and continuing the investigation as before, we are able, in all
possible cases, to resolve the given symbolical function

Qn‘pn(ﬂ') + Qn_lq:’n—l(#) +...+ ¢o(7")

into binomial factors.
‘Hence, in any linear differential equation,

dr—2y

r llﬁ?’ +Xr—-1 dxr——l +Xr—-2 dxr—2+
if we put .

d
g=7a, 7l'=.17%9

we shall be able in all possible cases to reduce it to a series of equations:—
eVt O (7Yl =X,
€ﬂ¢gz—2) (W)un-d + \%n—2)(7,)un_2 = un— 1
&ec. =&e.,
¢be (P +d (P =w,
a series of binomial equations, each of which may be treated by the methods due to

Professor Boore. I shall now explain a process analogous to that denominated € evolu-
tion’ in ordinary algebra. To resolve the symbolical function

22"<Pzn(7f)+e2"'l¢2n_1(7") +...4 q:’o(”')

into two equal factors.
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For this purpose, let us assume
" Pon(T) F ¢ Gons(T) + 0" Pono(7) 4 . .+ Go(7)
=("u(m) ¢ My s(7) g o)+ .. -0

From this we find, equating the coefficients of ¢,
0.()0,(7 +1)=,.(7),
b (7 +n)0 (7 +20)=@,(7+n);

from whence

or
0 (7r+2n)_"’2" ”+”) 0.(7),

whence

0,(7)= Pon(m—1) Pou(m—30)Pon(m—5n)...
n —¢2n 7r—-2n)¢2,,(7r—-4n)¢2n(7r—6n)

~“Again, equating the coefficients of ¢*~*, we shall have
b+ (=1 o(T)=p(x)- s . o . . . (A)
0,(%), @on_(7) are known rational functions of (), wherefore assume
b(7m)=a+br+cx*+ ...+ k',
Puna(F)=0A-Prtya+ .
where @, b, ¢, ... a, 3, 7,... are known, and
é,,_l(vr)=A+B7r+ Crit.. .+ Ko,

where A, B, C are known. They may be easily found by equating the coefficients of
(#) in equation (A.) and §,_,(=) thus determined.
If we equate the coefficients of ¢*~%, we shall have

0, T )0, o (B ) (71— 2) b, 70, (71 —1) =04 (7),

from which 4,_,(#) may be determined in like manner. By this method we may in all
possible cases reduce a proposed differential equation,

d2r 1y

X2r dxzr+X2r—-l Mzr-—l"' +X’d.z'+X°u_X
to the form

dr-1
{*"’r dwr+ (= dz.r—l+ +H0} u""'X

When ., E,_., &c. are rational functions of ().
* The methods for finding the highest common divisor in ordinary algebra apply equally
to the present Calculus, as will be seen by the following examples:— -
To find the highest common internal divisor of the symbolical functions ¢*+4-p—=*
and g*H-g(x*+7+41)—=".
2M2
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Take ¢+ ¢—a* for a divisor, and proceed as follows :—

¢+e—=")g+e(w+7+1)—°
g+ —=
g7+ 7)—75+7*
It is easily seen that the remainder may be written #(z—1)(g—=).
Hence, taking ¢p—= as divisor,

e—7)'+e—7(¢+7

i
e(741)—3z*
e(z+1)—a*

Hence p— is the highest common divisor of ¢?+¢—7* and *+g(7*+74+1)—7°

Again, to find the highest common mternal divisor of gz (7 4-1)+4-¢(#*+7*) 7 (v —1)
and g'r—2¢° 7:'—]—-5(7;-2-}-7;-)—}—%'

The first of these quantities is equivalent to (w—1)(¢* 7r+g(7r2+9r)+7r"’)

We take g*z+¢(#*+#)-+a* for divisor, and proceed as follows :—

e +e(7 7)) +7° )7 — 2 Ho(7 - 7) 7 (o— (7 +1)
g7 47" +7)+er
— (= 3m) et
— (74 37) — o(7*+ 37’4 27) — 2’ (w4 1)
e(#*+ 374 37)f 7+ 7+ 7
The remainder is equivalent to (#*+4-#-+1)(ex+7*).
Hence, taking gz-+=* for a new divisor,
er+a* )¢’ n+e(7*+7)+7" (e+1
grter’
er
e

Hence g7+ is the highest common internal divisor of

(74 1)+o(+*+7*)+ 7 (7—1)

¢*r—2¢r +o(v*+7)+ 7
It is evident, as was mentioned in the introduction to this memoir, that this process

is equivalent to finding the conditions that two linear differential equations may have a
common solution.

- I shall next proceed to find the general term of the continued product

(e-H0,7)(o+6:7) e+ 7). .. (e +6,7).

and



MR. W. H. L. RUSSELL ON THE CALCULUS OF SYMBOLS. 257

This product, when developed, will be of the form

¢"u(m)F¢" T Pur(7)F - ¢ 0u(7) Fo Fepm (7).
Then ¢,(=) is given by the following rule :—
Write down the following symbolical product :
by (m+m)o(w+m)y(z+m).....0,_.(7+m);
take every possible combination of the quantities 1, 2, 3,...n taken (n—m) at a time, and
substitute them as the weight* of § in this continued product, diminishing (m) in each
factor by the increment of the weight of the factor; add all the results together, and we

obtain the value of ¢,(#). The truth of this rule will be manifest to every one who will
consider the following result obtained by actual multiplication :—

(e+0m)(g+0m) (g +0m) e +m)(e Hbim)=¢"
e ()0 8)H (7 +2) (5 1)H))
+&*{0,(7+3)0y(7 4 3)+0,(7 4 3)by( 7 +-2)+ (7 + 2)0s(7+2) +0,(7+ 8)0, (7 +1)
FO0y(74+2)0,(7+1) Fby(z7+1)b, (w4 1)+ 0,(7+ 8)b,7 4 0y(7 +-2)8,(7) + b5(7+ 1 )07 -0 78,7 }
+&* {6(7+2)0(7+2)6(7+2)+0y(7+2)b,(7+2)b,(7 +1) +0,(7+2)b(7+1)0,(7+1)
0, 1) 7+ 18 (74 1) b, (r+2)h(r 4 2)r 4O, (r 4 2)0(x + )0
(7 4+ 1)0y(x 1) 0, (7 +2)0 b+ b7+ 1 ) by - OO O }
Fe{b(m41)0(m+1)0y(x+ 1) (7 +1) 40, (m 4 1)8y(x +1)0y(7+ 1)o7
+0,(74+1)0(7 +1)0 70+ 0,(7 +1) 070 b - 0,76, 70 7l
+ 7l w7l i,

I now come to the investigation of the two new forms of the binomial theorem as
explained in the former memoir.

It is evident, in the first place, that in multiplying any binomial (¢’4-¢d(#))” by
¢+ef(7), the result in this case will be the same whether we employ internal or
external multiplication.

Let
(& 4-e0(m) )" ="+ Popr(T) F € *Pans+ <« s

where ¢y, (%), Pon—s(7), Pan_s(7) are unknown functions of () which we seek to deter-
mine.

Then multiplying externally and internall}.r by (¢*4-¢f(7))
(€2+€9(7r))n+1= 2n+2+€2n+1¢2n_1(7‘_) __I_g?;z@m_z(”.) -
+ (7 +2m) +§2ng(7,+2n_1)¢2n_,(7r)+ ces
=g9"+2+§2n+l¢zn-1(77+2)+§2n¢2n—2(7"+2)+ cen
() +er s (7 +1)+ -

#* The use I have here made of the term ‘weight’ will be familiar to every one who is conversant with the
modern Higher Algebra.
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From whence, by equating the coeflicients of (g),
Pons(7)+ Y7+ 2n)= Pona(7+2)+ 0(7")’
(e —1)gy ()= ("% —1)o(r),

whence
2n'd‘ — 1
¢2n_1(7x')=E i" 0(71').
&%dn— 1 ‘
Again,

 PuncaF) U+ 20— 1) (7)= Pon s+ 2) - s+ L),

1 Ie%g;—l 4 1 fe(m“)g;r—e%r
Oon—oT)=—3 7 (= )}{9(2"'1) an O } - 07;'}07;-.

v a a
gar—1 le’n—1 Egdvr—-ll o —1

We shall now investigate another form of this expansion, by which we shall be able
to obtain a remarkable expression for the general term. We shall express the unknown
functions by a notation slightly differing from that which we have just employed. The
reason for so doing will be easily seen by the reader.

- Let

Th (62+§A7r)n___£2n+g2n—1¢(ln)7‘.+§2n~2¢gn)(7r)+ ..
en

(Sel(m))+ =g o (74 2)+ e (7 +2) + ..
+e () e (m 1)+
=" g (7)) el () -
o (w) =" (7+2)+4(=),

or
00 () — i =),

‘Wherefore, solving this equation in finite differences, we have

o1 () =60V 3.

Again,
ot r =i (r+2) 490 (r-+ L),
whence
d
oSl B 92;? PP = brgtn ey,
Hence

gi0(m)={ oo s} o)) { o0 semo o)
— s—%‘_{e(z’n—l)g‘, 25'2”5;} 9(7‘.) { 9(27;-1)3'2 29—27;;1;} 9(7‘.)

=g—dj;, { 9(27:—-1)‘%, Ee—zng;r 0(7;_) }2 ;
and similarly,

d . d d r
o 7 =s*5r{e‘2"‘”d7r Ee""”&‘%é(w)} ,

where, however, a proper correction must be added after each performance of the symbol 3,
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As there are some peculiarities connected with this form, I shall calculate its value at
length for the values r=1 and r=2.

First, let »=1. Then g a
() = Vam e~ aml ()
=e2(n-—l);7-r Hl __.%(_71_,
525'—1
Let n=1. Then o
¢oVr=dr, and II,= : ; @) .
92—
gdr—1]

0( ),

Consequently

¢(n)(7r)__
€ lhr—l
which coincides with the value of the coefficient of ¢! obtained by the former process.

Again
ga 9 ¢;")(7r)=22(n—1)£—r 25—21%', 0(71')8(2"—1)% 28_%4%' 9(71_)

—22(n—l)dn, S 2”%9(71-)54;5 d”"l é’(7r)
E 7l‘—
4 d Ezn
- =&V 37— 2m)ean. «9(7:'—272)
£ d-rr— 1
d
d 5 d‘rr-—-l

2(”‘1)41# z( —on g g(ﬂ-))gdn- ( 2nj§- 0(71'))

g —

— 2D S, { ~angy 0(7r)) < = 9(7’))}

d
20—

e2d1r —1

—22(’”‘”4 e 2"d1r{0(71') e 9(«71')}

— g0 I+ s“’(”’“);r( iy U= )) ( edﬂ 0(7:))

e 1 e 1
a edn
— =g & (0( 7)— 0(%'))
) e d1r— 1 & d1r— 1
d ] <2n—1)—'l—
— 2(,‘_1)3; H2—< d(?f) ) (E d dn 9(71'))
2 —1 an—1

<é(z') e@))

where I, is a function of (#) to be determined.

3 d1r-—1 Babn-_
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For this purpose put n=1, then ¢(")(7r)=:0 and

(42 (59)- 2;_1<«w> o)

edn- gdr—T] gdn sdrr—l

olr(r)= (";;d""l«vr)) (5% o)) =551 ()=o),

dr—1 eQdﬂ'-— fin—1 & drr— 1

‘We next proceed to show thc identity of this value of the coefficient of ¢*~* with that
formerly obtained.

The truth of the following theorem is easily seen :—

(i) = (1) fi () @ L) fum) A e = D) A = 1)f7).
Hence

E(2n— 1)_.

(1)t ={ (i — om0} 4 { 0 _1)0(,,)}{ om}

HlemrorH (57 ) | eemrm) ()2t

d —1
But

o(=);

(#e=rim1) (0m.— 2 ot)) = i) (E@”_D“e(ﬂ)—-ew

e%n—1 € dﬂ—l

N
(e — 1) o= (203t o)) (s () + (E—(i;:—l-é(w)) (g ()

g dm—1

4

a gen-nL
— (7 ) Vi b — (7)) . O (7). —;

e2dm—1 i —1

4 ) 2n+ 1)~
~=I : ""‘197} {eennit g} — { E< )d"_sdﬂé(w)}ﬂ(n')

t E2d1r—1 € dvr—]_

or

a a
1 (emz—1 smind 4
0, Wr= 7 {E 2 07:'}{6(2"“)d 97:'}-- ( dd far 0(77)}071',

E‘zdw——]_ € d1r— 1 2d7r-—-1 g d1r—] )

which agrees with the value of the symbolical coefficient of ¢~ as before obtained.

It is proper to add that the same method of investigation applies to all binomials of
the form (¢*+¢%(#))", of which I have, for the sake of simplicity, selected the case
(&gt

I now come to the calculation of the coefficients of the general term of the form of
the binomial theorem as given in the first memoir.
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Let us assume
(E+el(m)'= ¢ +AV" AP F-&e.
H(AP" T+ AP A - &e )7
+(APe" AP+ AP & )" - &
(AP AP - AP &e. ) 4 &e.
Then we have, writing 4,,(=) for ITW::@)—%’
AP =34(2n)
AP=34(2n—1)24(2n)
AP =34(2n—2)30(2n—1)202n
&c.=&ec.
AP=342n—s+1)302n—s+2).... 202n
AR=38,(2n)
AP =34(2n—1)34,(2n) 4 26,(2n—1)24(2n)
AP=340,2n—2)24 (2n—1)30 (2n)
+30 (2n—2)S4,(2n—1)34 (2n)
+30 (2n—2)30 (2n—1)26,(2n)
&e.=&ec.

APO=34,(2n—s+1)24 (2n—s+2)...24(2n)
+34(2n—s+1)24,(2n—s+2). .. 24(2n)
+...

+340(2n—s+1)24 (2n—s+2) ... 24,(2n)

AP=34,(2n)

AP =30,2n—1)2020+26,(2n—1)20,(2n)
+30 (20—1)34,(2n)

AP =30,(2n—s+1)20 (2n—s+2)...24(2n)
+34 (2n—s+4+1)30,(2n—s+2) . . . 24(2n)

430 (2n—s+41)30 (2n—s+2). .. 20,(2n)

+30,(2n—s41)30,(2n—s+2) ... 24 (2n)
+34,(2n—s+1)30 (2n—s+2) . .. 24,(2n)
+..
Where there are (s) terms in the first part of this expression, and s - f%l- in the second :
AP=34, (2n—s+1)30, (2n—s42)34,(2n—s+3) ... 26, (2n)
434, (2n—s+1)34, (2n—s+2)34,(2n—s+3) .. . 24, (2n)
+30,(2n—s+1)24, (2n—s+2)34, (2n—s+43) . . . 26,(2n)
+ ...

MDCCCLXIL 2N
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where &, 8,, V15 « - -V @ B4y Yy -+ - ¥y, &c. are all the whole numbers which satisfy the
equation

at+B4+y+ ... Frv=n

(m)
In the preceding investigation we have used 4,(w) as an abbreviation for e

1.2.3..m
where 0™ is the mth function derived from ¢(x). In the following investigation, it is
proper to remark that 6,(x), 6,(=), by(7).. . are any rational and entire functions of (=)
whatever. ’ , '

To find an expression for the general term of the multinomial theorem, by which

(e () e 0(m)+ e (m)+ ... )
is expanded in powers of (g).
Let us assume

(€u+§u—lg](7r)+€a—2 2(77)+ . )n=§om+gom—1¢gn)(7r)+gan—2¢gn)(7r)+§an—3¢§n)(7r)+ .
Then multiplying internally by the factor

¢+ 0(m) T (7) +e 0t
and equating coefficients of like powers of (¢), we have the following series of equations :—
01+ 01 () =0,(x),
¢e 0 () — o (m+a) =0,(m)e (7 —1)+-4y(w),
B (5) = () =0, ()80 -+ 1)+ ()0 —2)+ (),
and thus we proceed : hence we have, putting the symbol * Vg Sgm g — I,
o\(w)= i 114,
o =3 T10,(#)e i [10,(w) ¢~ T16,(w)
¢§”)7r=e“"%r H(J,(vr)s‘e%r H(J,(vr)e“%r 114,74 i 1'[01(7:-)5‘%1 H@(w)—l—s"“;;r Héz(vr)e‘% 14,7+ e I14,x
0 () == T10,( )6~ TI0 ()6~ 110,(w)e = TN0,()
+e‘°‘%r H&l(%’)ﬁ_%’ Hgl(m')e‘%rﬂgﬂ-l—e““;‘r Hﬂlm”;_n ng(’ﬂ')e—2d%r Hélvr—l—e“"c% H02(m-)a“a‘z‘r l]élvre‘;,? 1147
+e‘°‘%r Hé‘l(vr)e—?%r I‘I%(w‘)—[—e““% H%(w)e‘% Hé‘(w‘)-]—e““% Ha‘,m‘z%r Hégr—l--e‘“ﬁ% I14,(=).

‘We easily see that the general term may be expressed thus: construct the formula

d

¢ TT0,(w )e~5 T14,(w)e~% T16,(w)e %% ... TIO (),
and give to «, 3, 7, ... » all the values which satisfy the equation
a+b+c+ ... de=r,
where an—7 is the index of (¢). Then the sum of all the terms so formed will be the

required result.
To determine the product of the factors

- (™)) et xnn(7)) - - - (e2(7)) - - - (e 2uma(7))oF26)s

whence x,(7), x(7), xs(7) emanate from each other after a given law.
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Let
° e+xu(m) - - - (eFxm) - - - e 3(w) ="+ olr e 'ofm+ . ..

Then multiplying internally and externally by g-+us1(7),
g2n+3 + e2n+2¢gn+l)7‘. +§2"+‘¢;”+‘)7r+&c.
="+ e (1) s+ 2042) 4 2ra(7)}
¢ e (r+ 1)+ (74 1 (7 +20+-1)
(7 i (T) F Yoni (7204 1) s (7))

Hence

o1V — 0w+ 1) = a7+ 20+-2)+ o7
whence 4 o X

() =i 3V s, (),
and also

g (m) — e (7 +1)=0 (7 +1)xas (7 +2n+1)
+ §Dgn)(7"))6n+ 1(7") + %+ 1-(7"+ 2n+ 1)7Cn+ 1(7") H
oir(my=e Se it {emvity, () Herke 3ot — o), ()
e Sem 45, () SVl V) ()
e 3o g () )
and in like manner we find the values of the succeeding symbolical coefficients.
I now come to the form of the binomial theorem which is reciprocal to that pre-
viously investigated.
To expand (#*4d(¢).#)" in powers of (7).
Let us assume

(‘”2'!‘0(?)‘ 7")”=7"2n+¢2n— 1(?) R S @m—z(?)- 7,
we know that .

r r d —1 r—1 d\? r—2
wte)=te).w+r(p )07+, 5 (¢ 7 ) b
Hence, multiplying internally and externally by #*-+4(¢)=, we shall have

‘7"2n+2'l'@27:-1(?)‘7"%4'l +<P2n-2(§) -‘7’2n+¢2n—3(§) N SRR
2n—1

+{9(g)7r2”-|- on (g ‘%) ooy +2n. 7 <g a%) "oe)n }7:
) 7+ 2n—1) (¢ ) A b

s de) 7 H20—2) (e ) 4D
+&ec.

=vrﬁ"“+{¢m-x(§)-vr?+2 (¢ 5’;) )7+ (¢ %)2%,,_,@)}7;%—1

+{¢2n—z(€) a2 (g é—é) Pons(e) . 7+ (6 d%) 2%”_2(5)}7,2»_2
2N2
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+ &0+ ). (Panns(0)- 7+ (57, i) )

0 (Paee) 7+ (1) P+ e
Hence equating coefficients of the powers of (¢),
¢2n—2(§) + 2n (f dg) 9(?) + @21:—1(?) 19(5) =4 <§ dg) @21:-—1(6) + ¢2n-2(€) -+ 0(?)@2#—1(?),

whence
¢2n— l(g) =nﬂ(§)

o) +20. 757 (275) 0o H 2= 1)0s(0) (5 ) A0)+ s

=(e%) ¢2n_l<e)+z(gd—g) PunoAD) ) (27 ) P (&)+ U )Pon-o0)+ o),

whence

‘ %n—z(é’):n(n—.l) <g ;—g) 0(§)+M2__'l)_(g(e))n ;

(P 0(e) 7y =7l 5" + {n(n—l)(g 5’;) 9(g)+n—(-7%——1~)(0(g))2}z'2”"+ -

the required expansion.



